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Purpose. To introduce partially linear mixed effects models (PLMEMs), to illustrate their use, and to
compare the power and Type I error rate in detecting a covariate effect with nonlinear mixed effects
modeling using NONMEM.

Methods. Sparse concentration-time data from males and females (1:1) were simulated under a 1-com-
partment oral model where clearance was sex-dependent. All possible combinations of number of
subjects (50, 75, 100, 150, 250), samples per subject (2, 4, 6), and clearance multipliers (1 to 1.25) were
generated. Data were analyzed with and without sex as a covariate using PLMEM (maximum likelihood
estimation) and NONMEM (first-order conditional estimation). Four covariate screening methods were
examined: NONMEM using the likelihood ratio test (LRT), PLMEM using the LRT, PLMEM using
Wald’s test, and analysis of variance (ANOVA) of the empirical Bayes estimates (EBEs) for CL treating
sex as a categorical variable. The percent of simulations rejecting the null hypothesis of no covariate
effect at the 0.05 level was determined. 300 simulations were done to calculate power curves and 1000
simulations were done (with no covariate effect) to calculate Type I error rate. Actual implementation
of PLMEMs is illustrated using previously published teicoplanin data.

Results. Type 1 error rates were similar between PLMEM and NONMEM using the LRT, but were
inflated (as high as 36%) based on PLMEM using Wald’s test. Type I error rate tended to increase as
the number of observations per subject increased for the LRT methods. Power curves were similar
between the PLMEM and NONMEM LRT methods and were slightly more than the power curve using
ANOVA on the EBEs of CL. 80% power was achieved with 4 samples per subject and 50 subjects total
when the effect size was approximately 1.07, 1.07, 1.08, and 1.05 for LRT using PLMEMSs, LRT using
NONMEM, ANOVA on the EBEs, and Wald’s test using PLMEMSs, respectively.

Conclusions. PLMEM and NONMEM covariate screening using the LRT had similar Type I error rates
and power under the data generating model. PLMEMs offers a viable alternative to NONMEM-based
covariate screening.

KEY WORDS: linear mixed effects model; NONMEM; regression splines; semiparametric mixed ef-

fects models; splines.

INTRODUCTION

One goal of population pharmacokinetics is to identify
covariates that may influence drug concentrations and, hence,
exposure (1). In a typical population model, the effect of the
covariate is mediated through its influence on the primary
pharmacokinetic parameters in the model (e.g., the effect of
weight on clearance). Through its effect on a pharmacokinetic
parameter, the covariate then influences drug concentrations.
However, the ability to detect a covariate affecting drug con-
centrations is dependent on the choice of structural model.
Although it has never been shown directly, it seems likely that
the effect of a covariate on exposure may be diluted through
the use of a structurally defective model. Hence, a more natu-
ral goal would be to identify the relationship between covari-
ates and drug concentrations directly without heavy reliance
on an appropriate structural model.
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Gibiansky et al. (2) first tackled this problem using cilos-
tazol. They proposed that the concentration-time data be par-
titioned into three groups based on the 25th, 50th, and 75th
percentiles using a nonparametric cubic spline fit to the con-
centration-time profile. Observations are then categorized
into which group they then fall into. For example, if the cutoff
for the 25th percentile at some time was 10 ng/ml and an
observation was 5 ng/ml, then this observations is categorized
into group 1. Then using either logistic regression or classifi-
cation regression tree models, the effect of covariates on
which group an observation is classified into can be deter-
mined. This method would be useful when only a single ob-
servation is available per subject but becomes problematic
when more than one observation is present, for then it is
entirely possible that one observation falls into one group but
another observation fall into another group. One then runs
into the situation where subjects are classified into multiple
groups, and how to determine which group a subject falls into
“overall” is questionable. What makes the method of Gibi-
ansky et al. so interesting is that they removed the effect of
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time from the analysis and focused solely on how the covari-
ates affect which group an observation was categorized into.

One of the most difficult parts of a population analysis is
determining an appropriate structural model, which is depen-
dent on how concentrations change over time. If the effect of
time could be neutralized or treated as a nuisance variable,
then perhaps the effect of a covariate on drug concentrations
could be determined directly. Splines are a good choice for
nonparametric modeling the effect of time on drug concen-
trations because their use effectively removes the time com-
ponent from a model. The purpose of this paper is to intro-
duce the use of partially linear mixed effects models
(PLMEMs) as presented by Ruppert, ef al. (3) (which they
call semiparametric mixed effects models) and Hardle et al.
(4) in the analysis of population concentration-time data us-
ing polynomial basis functions and to examine the power and
type I error rate of PLMEMs at detecting important covari-
ates compared to direct covariate screening using NONMEM
(5) and post hoc examination of the empirical Bayes estimates
(EBEs).

Partially Linear Mixed Effects Models Background

Before beginning the development of partially linear
models, a basis function must first be defined. Using Heavi-
side function notation, a linear spline basis function (some-
times called a truncated line function) may be written as

u, = (X - k)+ (1)

where x is some variable, k is the knot, and for any x, u, is
equal to (x — k) if (x — k) is positive and equal to 0 otherwise.
Hence, if x = 6 andk = 3,theu, = 3. Butifx = 3andk =
6, then u, = 0 because (x — k) is negative. A set of such
functions is called a linear spline basis and a spline model
using these spline bases can be written as

K
Y =0+ 0,x+ D, 0, (x—k), +& )

i=1

where now x is the independent variable, Y is the dependent
variable, 0 is a set of parameters that are to be estimated, ¢ is
the residual, and K is the number of knots. Ordinary least-
squares can be used to estimate 6 and obtain the linear spline
fit to a data set. A linear spline fit to simulated concentration-
time data from a one-compartment model with first-order
absorption with samples randomly drawn over a 24-h interval
can be found in Fig. 1 using equally spaced knots from 3 h to
21 h every 3 h.

Although easy to compute, this approach has some limi-
tations. First, this algorithm assumes that the observations are
independent; it fails to take into account the within-subject
correlations in the data and assumes that each data point is a
unique observation. Second, the spline model may be un-
stable because as the number knots increases, the new vari-
ables may be collinear (6), although a singular value or QR-
decomposition (7) may be done prior to inversion to stabilize
the model parameter estimates. Third, the resulting fit may be
dependent on the number and choice of knots. This third
problem may be minimized by using automated knot selec-
tion methods or model selection criteria to find the optimal
number and choice of knots, but these methods are compu-
tationally intensive and not easily implemented (3).
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Fig. 1. Linear spline fit to simulated concentration-time data using
linear spline basis functions with knots at 3, 6, 9, 12, 15, 18, and 21 h
after dosing. Concentration data from 97 subjects were simulated
with each subject having from 1 to 4 samples collected at steady-state.
Data were fit using PROC REG in SAS using ordinary least squares.
Drug concentrations were fit after Ln-transformation and then pre-
dicted values were estimated after exponentiation back to the original
domain.

Penalized spline regression with truncated polynomial
basis functions were developed to overcome some of the nu-
merical problems encountered with fitting linear spline func-
tions. The general model for a p-degree spline model is then
written as

K
Y =05+ 0,x+.. 0,x"+ >, 0,,,(x— k)P 3)
i=1
If Disa (K + p + 1) diagonal matrix whose first (p + 1)
diagonal elements are equal to 0 and whose remaining K
diagonal elements are equal to 1, that is,

D =diag(0,,4, 1x) C))

the fitting criteria is then to minimize the penalized objective
function

(Y -x0)T (Y —x0) +0TDo 5)

The solution to which is
6=x"x+\*D)' xTY (6)

where \ is called the smoothing parameter. Hence, the solu-
tion is something similar to ridge regression where the term
\?PD attempts to reduce the variability of the estimated re-
gression coefficients. The penalty term, the second term in-
side the parentheses in Eq. (6), attempts to shrink all regres-
sion coefficients associated with the spline basis functions to
zero and is sometimes called a roughness or curvature pen-
alty. At large values of A, the penalty term becomes large and
the smooth increases to the ordinary least squares fit to the
data. As N\ approaches zero and the penalty term becomes
zero, the smooth becomes an unconstrained spline fit. Luck-
ily, as long as the knots cover the range of x data well, their
number and positioning has little effect. Hence, smoothing is
largely controlled by the value of \. Figure 2 presents the
same data in Fig. 1 using penalized splines with A varying from
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Fig. 2. Linear spline fit to the simulated data example using penalized spline regression
with varying values of X\ and knots at 3, 6, 9, 12, 15, 18, and 21 h after dosing.. Data were
fit using PROC IML in SAS. Drug concentrations were fit after Ln-transformation and
then predicted values were estimated after exponentiation back to the original domain. As
N — o, the penalty term dominates, forcing the curvature toward zero. As A — 0, the
penalty term approaches zero with the result being a linear spline fit to the data.

0.1 to 1000. Notice that as \ increased, the smooth became
less and less wiggly and curved.

One problem with a linear spline basis is that for data
that show curvature, such as concentration-time data after
oral administration, the spline may appear discontinuous and
may not fit windows where the derivative is changing sign. For
example, in Fig. 1 and Fig. 2, near the time of maximal con-
centration (~3 h), the spline makes an abrupt change from
positive slope to negative slope. A better model would have
the change from positive to negative slope be a gradual one.
One way to escape from such piecewise linearity is to use
higher order penalized regression splines, either quadratic or
cubic, most often the latter. Figure 3 presents a penalized
regression fit to the data in Fig. 1 using quadratic and cubic
spline basis functions at the optimal value of \ (i.e., with N =
2). With higher order polynomials, the curvature in the con-
centration-time data was better estimated and smoother fits
were obtained compared to a linear spline basis function.

Two points should be noted. First, spline models re-
ported within SAS (SAS Institute, Inc., Cary, NC) or S-Plus
(Insightful Corp., Seattle, WA, USA) do not use the method
just presented. These packages use cubic splines that mini-
mize the objective function

n

> wiY - Yy en [ (@002 ax ™

i=1

where w; are the weighting factors, and the second term again
controls the smoothness. Second, while truncated basis func-
tions are useful to describe splines, their routine use is prob-
lematic because as the number of knots increases so does the
collinearity between the basis functions with the result being
a numerically unstable smooth (ill-conditioned). For example,
using the linear basis functions with knots equally spaced
from 3 to 21 h as in Fig. 3, the 3 h and 6 h knot have a
correlation of 0.9930, 6 and 9 h have a correlation of
0.9906, and so forth. For this reason, alternative basis func-
tions, ones that are more stable numerically, are sometimes
used.

The use of splines in population modeling is not new.
Park et al. (8) reported on the use of splines to analyze oral
concentration-time data and obtain estimates of area under
the curve, maximal concentration, and time to maximal con-
centration. However, in their approach, concentrations were
modeled as a function of a “template” spline common to all
individuals and a “distortion” spline representing individual
differences from the template. To estimate the template
spline, the coefficients of the basis functions were treated as
fixed effects. In contrast, the basis functions are treated as
random effects in the PLMEM approach. Further, in order to
obtain a reasonable spline fit to their data, Park et al. force
certain constraints upon the spline, such as a negative tail-
slope. No such constraints, like monotonicity or non-
negativity, are made with the PLMEM approach. Hence, al-
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Fig. 3. Penalized regression spline fit to the simulated concentration
data using quadratic spline basis functions (top) and cubic spline basis
functions (bottom) with knots at 3, 6, 9, 12, 15, 18, and 21 h after
dosing and \ fixed at 2. Data were fit using PROC IML in SAS using
ordinary least squares. Drug concentrations were fit after Ln-
transformation and then predicted values were estimated after expo-
nentiation back to the original domain.

though the approach by Park et al. and the approach pre-
sented herein are similar, they are different methodologies
with different assumptions. Because of their superficial simi-
larities, it was decided that these models would be presented
herein under the name partially linear mixed effects models,
as called so by Hardle et al. (4), instead of under the name
semiparametric mixed effects models, which unfortunately is
the same name used by Ruppert ez al. (3).

Penalized Regression Splines Using Mixed
Model Methodology

Penalized regression splines using truncated power basis
functions can easily be extended to a linear mixed effects
model by treating the basis functions as random variables.
Within a pharmacokinetic context, time is treated as a fixed
effect. In this context, these models will be referred to here-
after as PLMEMs. Let x be the matrix of fixed effects, which
includes time and any covariates, and U be the matrix of
spline basis functions, which are treated as random effects.
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For a quadratic spline basis function having K knots at k,,

k,, . . . kg, the linear mixed effects model can be written as
Y=xB+zU+e¢ 8)
where
1y 2]
1t t
X = , and
R
[t k)7 (4 -k (t, — k)7 |
G-k} (b-k)? (t2 = ki)
L (tn - k] )3— (tn - kz)i (tn - kK)i —

Under this framework, U ~ N(0, G) and ¢ ~ N(0, R). A
common between-subject variance model for the random ef-
fects (the G-matrix) is a Toeplitz(1) structure (9), which has
common diagonal variance components and zero off-diagonal
elements for all the random effects

o> 0 0 0

(10

while the within-subject variance (the R-matrix) is usually,
but not always, modeled using a simple covariance model.
The empirical best linear unbiased predictors (EBLUP)
evaluated at the design points under a mixed model structure
is the same as the penalized regression spline solution to the

problem where
. R\ 1/2p
i-(5)

Within a general linear mixed effects software package,
such as SAS (10) or S-Plus (11), Eq. (8) can be fit using either
restricted maximum likelihood (REML) or maximum likeli-
hood (ML) estimation, although REML is the usual choice, as
REML takes into account the loss in degrees of freedom in
estimating the fixed effects in the model (9). The advantage of
this approach is that now the model is easily computable using
standard linear mixed effects software, but more importantly,
the within-subject correlations can be modeled, as can the
effect of covariates. Indeed, failure to account for within-
subject correlations can result in an undersmoothed spline
(12). Penalized splines formulated within this framework by
allowing for the inclusion of covariates into the fit. Hence,
entire population models can be developed without having to
specify a compartmental structural model. Further these
models can be easily used to screen for important covari-
ates to take forward into further model development using
NONMEM.

Figure 4 presents a penalized regression spline fit to the
data in Fig. 1 using REML estimation with quadratic spline

(11
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Fig. 4. Linear mixed effects model regression fit to the simulated
concentration data using REML estimation with quadratic spline ba-
sis functions and knots at 3, 6, 9, 12, 15, 18, and 21 h after dosing. A
Toeplitz(1) covariance matrix was used for the random effects, and a
spatial power covariance matrix was used to model the within-subject
errors. Drug concentrations were fit after Ln-transformation and then
predicted values were estimated after exponentiation back to the
original domain. The optimal value of N\ was estimated at 1.7.

basis functions and knots at 3, 6, 9, 12, 15, 18, and 21 h after
dosing. The appendix presents the SAS code used to analyze
the data. A Toeplitz(1) covariance matrix was used for the
random effects and a spatial power covariance matrix was
used to model the within-subject errors. The SAS code used
to fit the model is shown in the Appendix. The between-
subject (G-matrix) and within-subject variance (R-matrix)
were estimated at 0.002798 and 0.02424, respectively. Hence,
the optimal value of A was estimated at 1.7.

Example

Teicoplanin was developed as a glycopeptide antibiotic
active against most gram positive bacteria. Steer et al. (13)
reported on the pharmacokinetics of teicoplanin in children
older than 2 months with burns over 10% total body surface
area (TBSA) and adults with burns more than 15% TBSA—
20 patients in total. The data set in it entirety was later pub-
lished and reanalyzed by Podczeck et al. (14). Because of the
wide range of weights, teicoplanin was injected 12 mg/kg in-
travenously as a bolus dose. Blood samples were drawn at
structured times after dosing until concentrations were below
the limit of detection of the bioassay. The following covariates
were available before starting treatment: sex, age, total burn
surface area in percent (TBSA), and creatinine concentration
(CDO0). Of interest would be, besides weight, are any of these
other covariates important predictors of teicoplanin pharma-
cokinetics?

Because the concentration data were based on different
doses (i.e., all the absolute doses administered were differ-
ent), plasma concentrations were first dose-normalized prior
to fitting the model. In a linear pharmacokinetic system, dose-
normalization should result in all concentrations being super-
imposable, thus allowing concentrations to be compared
across children and adults. The proposed PLMEM to the data
was a quadratic spline basis function and knots at 0.25, 0.5,
0.75,1, 2,3, 4,5, 6, 8, 12, 24, 48, 72, 96, 120, 144, and 288 h
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post-dose. The dose-normalized concentration data were
skewed, which would probably violate the assumption of re-
sidual normality. So, the first thing done was to find a suitable
transformation to the data that would lead to approximate
normality in the residuals. A Box-Cox transformation (15)
was applied to the dose-normalized concentrations, and the
PLMEM was fit to the transformed concentrations. The Box-
Cox parameter was varied from -2 to 2 by 0.5 and the cor-
relation between observed residuals and expected residuals
under a normal distribution was calculated (normal probabil-
ity plot). The value of the Box-Cox parameter maximizing the
correlation between observed residuals and expected residu-
als was 0 (Pearson r: 0.98, p < 0.0001), so the logarithmic
transformation appeared to be the best transformation for
this data.

Figure 5 presents a scatter plot of log-transformed dose-
normalized concentrations and model predicted concentra-
tions under a PLMEM with no covariates fit using ML and
REML. The REML fit was almost exactly the same as ML as
the two curves were not distinguishable. The base model
without covariates appeared to do an adequate job at char-
acterizing the data. PLMEMs for each of the covariates (1
model for each covariate) were developed. Using a critical
value of 0.01 based on the likelihood ratio test (LRT) for
statistical significance and ML estimation, all covariates were
identified as being important predictors of teicoplanin phar-
macokinetics (sex p value: <0.0001; age p value: <0.0001;
TBSA p value: <0.0001; CDO p value: <0.0001). Based on
the solution to the least-squares equations, concentrations
were 13% higher in females (90% confidence interval:
1.0-27%), suggesting that the sex effect would not be of
clinical relevance. Further, concentrations tended to decline
as age, TBSA, or CDO0 increased. The results from this analy-
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Fig. 5. Mixed model regression fit to the teicoplanin data set in
20 patients with advanced burns using ML and REML estimation
with quadratic spline basis functions and knots at 0.25, 0.5, 0.75, 1, 2,
3,4,5,0,8, 12, 24, 48, 72, 96, 120, 144, and 288 h after dosing. A
Toeplitz(1) covariance matrix was used for the random effects and a
simple covariance matrix was used to model the within-subject errors.
Dose-normalized concentrations were fit after Ln-transformation and
then predicted values were estimated after exponentiation back to
the original domain. Solid line is the predicted model fit to the data—
both estimation methods lead to indistinguishable predicted values so
only a single line is apparent. The optimal value of \ estimated using
ML and REML was 6.3 and 8.5, respectively. No covariates were
included in the model.
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sis were consistent with the conclusions of Steer et al. (13)
who demonstrated a significant correlation between teicopla-
nin concentrations at 12 h and age, TBSA, and CD0. How-
ever, only age (p < 0.0001) was statistically significant using
REML estimation, thus highlighting the importance of esti-
mation method on statistical significance with small sample
sizes.

METHODS

The purpose of this simulation was to examine the power
and type I error rate of PLMEMs at detecting important co-
variates compared to screening directly using NONMEM.
Single dose population concentration-time data were simu-
lated from males and females (1:1) under a one-compartment
model with first-order absorption after an oral dose of 1 mg.
The number of subjects was systematically varied from 50 to
250. The number of observations per subject was fixed and
varied from 2, 4, or 6 samples per subject using a pharmaco-
kinetic screen approach. Subjects having 2 samples per sub-
ject were randomly sampled from the time intervals O to 6 h
and 6 to 24 h. Subjects having 4 samples per subject were
randomly sampled from the time intervals O to 2 h, 2 to 4 h, 4
to 10 h, and 10 to 24 h. Subjects having 6 samples per subject
were randomly sampled from the time intervals O to 2 h, 2 to
4h,4to6h,6to10h, 10 to 16 h, and 16 to 24 h. Clearance
(CL) was log-normal in distribution with a mean value of 15
L/h in males and 20% between-subject variability (BSV).
Volume of distribution was log-normal in distribution with a
mean value of 100 L and 20% BSV across sexes. The absorp-
tion rate constant was log-normal in distribution with a mean
value of 1 per hour and a 30% BSV across sexes. One covari-
ate was introduced into the simulation: patient sex on clear-
ance. The effect of sex on clearance was treated as a constant
multiplier which was systematically varied from 1.0 (no effect)
to 1.25 (25% increase in clearance in females compared to
males). Hence, under the simulation three factors were ex-
plored: sex effect on clearance, number of samples per sub-
jects, and total number of subjects.

Knots were generated equally spaced every 3 h for 24 h
and a PLMEM was fit to the data using REML. Quadratic
spline basis functions were used as the random effects. Be-
tween-subject variability was modeled as a Toeplitz(1) covari-
ance structure, whereas within-subject variability was mod-
eled using a simple covariance structure. Time was treated as
a quadratic polynomial fixed effect. Patient sex was also
treated as a fixed categorical effect. Numerator degrees of
freedom was estimated using Satterthwaite’s approximation
(16). The statistical significance of sex in the model was tested
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two ways. First, using the p value obtained from the Wald test
on sex, that is, parameter/(standard error of parameter) (9).
Second, a reduced PLMEM without patient sex as a covariate
was developed, and then the likelihood ratio test with 1 de-
gree of freedom was used to compare the full (with patient
sex as a covariate) and reduced model (without patient sex as
a covariate) (17).

Nonlinear mixed effects models were also used to ana-
lyze the same concentration-time data as the partially linear
model. A one-compartment oral model (ADVAN2
TRANS2) was fit to the data using NONMEM (version 5,
GloboMax, Inc., Hanover, MD, USA) using first-order con-
ditional estimation (FOCE). Two models were developed for
each data set: one with sex included in the model for clear-
ance (full model) and one without sex in the model (reduced
model). The starting values were the known population
means and variances used to simulate the data. Because of the
sparseness in the data, the model had difficulty estimating the
absorption rate constant, and many runs resulted in rounding
errors. To avoid this problem, the absorption rate constant
was fixed to its mean value, 1.0 per hour, in both the full and
reduced model, and then treated as a nonestimable model
parameter. It should be pointed out that the full model used
to fit the data was the same model used to simulate the data.

The likelihood ratio test was calculated for the full and
reduced model and the statistical significance for including
sex in the model was tested based on a x* distribution with 1
degree of freedom (17). Statistical significance was declared if
the p value from the LRT was less than 0.05. The significance
of sex on CL was also tested using a covariate screening ap-
proach wherein the empirical Bayes estimates (EBEs) for CL
were calculated for each subject. Analysis of variance on the
log-transformed EBE was done treating sex as a classification
variable. Statistical significance was declared if the p value
from the ANOVA was less than 0.05.

For each combination of effect size, samples per subject,
and total number of subjects, 300 simulations were done, ex-
cept for when the effect size was zero in which 1000 simula-
tions were done. Power was determined as the number of
simulations that rejected the null hypothesis of no sex effect
at p < 0.05. Type I error rate was determined as the power
when the effect size was fixed to zero (no covariate effect)
(18).

RESULTS

Table I presents the type I error rate for detecting a false
covariate using PLMEMs and NONMEM. Type I error rates
were different among the methods (p < 0.0001). Type I error

Table I. Type I Error Rate for the Various Methods

Partially linear mixed
effects model using the

Partially linear mixed
effects model using

LRT Wald’s test NONMEM using the LRT ANOVA using EBE for CL
Number of

subjects 2 4 6 2 4 6 2 4 6 2 4 6
50 2.1 8.3 13.6 11.7 253 35.6 6.5 8.8 9.5 4.3 4.0 4.4

75 1.8 72 13.4 10.4 24.7 343 4.9 8.4 10.5 4.5 4.0 5.4

100 1.6 6.5 12.6 11.0 243 331 6.1 7.8 10.6 4.7 5.1 4.0
150 2.3 6.3 10.2 11.0 25.0 332 6.7 8.8 8.9 52 3.8 38
250 1.3 5.0 10.1 12.8 25.1 34.0 7.0 9.0 10.1 5.3 4.4 35
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Fig. 6. Power curves for partially linear model covariate screening using the LRT test (top left), NON-
MEM screening using LRT (top right), covariate screening using the EBE for CL derived under the
reduced NONMEM model (bottom left), and partially linear model screening using Wald test (bottom
right) when 2 samples per patient were collected using sample sizes of 50 (solid circles), 75 (open circles),
100 (solid upside down triangle), 150 (open upside down triangle), or 250 (solid squares) subjects.
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Fig. 7. Power curves for partially linear model covariate screening using the LRT test (top left), NONMEM
screening using LRT (top right), covariate screening using the EBE for CL derived under the reduced NON-
MEM model (bottom left), and partially linear model screening using Wald test (bottom right) when 4 samples
per patient were collected using sample sizes of 50 (solid circles), 75 (open circles), 100 (solid upside down
triangle), 150 (open upside down triangle), or 250 (solid squares) subjects.
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Fig. 8. Power curves for partially linear model covariate screening using the LRT test (top left), NON-
MEM screening using LRT (top right), covariate screening using the EBE for CL derived under the
reduced NONMEM model (bottom left), and partially linear model screening using Wald test (bottom
right) when 6 samples per patient were collected using sample sizes of 50 (solid circles), 75 (open circles),

100 (solid upside down triangle), 150 (open upside down triangle), or 250 (solid squares) subjects.

rate was dependent on sample size (p < 0.001) and number of
observations per subject (p < 0.0001) using the LRT as a
covariate screen within a partially linear model. Further, type
I error rates were below nominal levels when only 2 obser-
vations per subject were available but where higher than
nominal levels when 6 observations per subject were avail-
able. In contrast, type I error rates using Wald’s test within
the context of a partially linear model were always higher
than nominal levels and were as high as 36%. Wald’s test
cannot be advocated under any conditions. Type I error rate
was dependent on number of observations per subject (p <
0.0001) but not sample size using the LRT as a covariate
screen within NONMEM and tended to increase above nomi-
nal levels as the number of observations per subject in-
creased. Finally, type I error rate was not affected by either
sample size or number of observations per subject using
ANOVA on the EBEs for CL and were near nominal levels
under all conditions.

Figure 6, Fig. 7, and Fig. 8 present the power curves at
detecting sex as a covariate on clearance when 2, 4, and 6
samples per subject, respectively, were collected. Wald’s test
within the context of partially linear model tended to have
higher power than the other methods, but Wald’s test also had
significantly higher type I error rate. Hence, Wald’s test can-
not be advocated within the context of a partially linear
model. Power curves for ANOVA of the EBEs of CL were
below those of the LRT methods. Similar power curves were
obtained using the LRT within NONMEM and within a par-
tially linear mixed effects model with four or more observa-
tions per subject. With two observations per subject, the LRT
within NONMEM appeared to be more powerful than the

LRT using partially linear mixed effects models. Eighty per-
cent power was achieved with 4 samples per subject and 50
subjects total when the effect size was approximately 1.07,
1.07, 1.08, and 1.05 for LRT using PLMEMs, LRT using
NONMEM, ANOVA on the EBEs, and Wald’s test using
PLMEMs, respectively.

DISCUSSION

These results indicate that PLMEM using the LRT test
appear about as powerful as the LRT within NONMEM at
detecting important covariate effects. Type I error rates were
similar between PLMEM and NONMEM using the LRT but
were inflated (as high as 36%) based on PLMEM using
Wald’s test. Type I error rate tended to increase as the num-
ber of observations per subject increased for all LRT meth-
ods. Power curves were similar between the PLMEM and
NONMEM LRT methods and were slightly more than the
power curve using ANOVA on the EBEs of CL. Eighty per-
cent power was achieved with 4 samples per subject and 50
subjects total when the effect size was approximately 1.07,
1.07, 1.08, and 1.05 for LRT using PLMEMs, LRT using
NONMEM, ANOVA on the EBEs, and Wald’s test using
PLMEMs, respectively.

These conclusions must be couched in one very impor-
tant regard. The same model used to simulate the data was
used to model the data within NONMEM. In reality, the data
generating model is unknown so that the results of this simu-
lation represent the best-case scenario. Under real-world con-
ditions, the power of NONMEM and PLMEMs at detecting a
covariate is unknown in the face of model misspecifications. It
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is anticipated that these models will not replace NONMEM-
based covariate screening but will serve as ancillary methods
for covariate identification, like tree-based methods (19).

PLMEMs are advantageous in that they effectively re-
move the need to develop a structural model that encom-
passes the time component in a compartmental model by us-
ing a set of spline basis functions that are treated as random
effects. Second, because PLMEMSs make use of linear mixed
effects model algorithms, they are faster than covariate
screening in NONMEM. For example, the NONMEM run-
time in the simulation with 250 subjects having 6 samples per
subject on a Pentium IV (1500 MHz) personal computer was
~38 s but was less than 3 s for the PLMEM. Third, PLMEMs
may also be useful for pharmacodynamic modeling where the
dependent variable is some effect and the independent vari-
able is concentration. In this case, the knots may be chosen to
cover the range of observed concentrations. Of course, much
further research is needed on the utility of these models in the
pharmacokinetic-pharmacodynamic setting.

PLMEMs, while certainly having some advantages, were
not without their disadvantages. These disadvantages relate
primarily to use of underlying spline basis functions, a criti-
cism that would also apply to earlier published work on spline
functions in population analysis. First, extension of PLMEMs
to multiple dose regimens where data are available on mul-
tiple occasions is not entirely obvious. Second, PLMEMs are
not meant to serve as a replacement for population models
that explicitly model how a variable changes over time. In-
deed, these latter models are highly useful for simulation as
PLMEMs are at a disadvantage in that simulation is not pos-
sible. Also, population models that use an explicit function,
such as a polyexponential equation, can be used to quantify
how a covariate impacts a pharmacokinetic parameter (e.g.,
how age or weight affects clearance). All that can be inter-
preted with PLMEMSs is that a covariate affects the depen-
dent variable. Although it may be possible to estimate the
magnitude of the effect of a covariate through examination of
the fixed effect estimates in PLMEMSs, their purpose is pri-
marily to simply identify whether a covariate has an effect—
without relying on an explicit underlying function.

In summary, PLMEMs represent a viable alternative to
NONMEM-based covariate screening. PLMEMSs are easy to
program, both within SAS and NONMEM, and are advanta-
geous in that they remove the need to explicitly model the
time component in a pharmacokinetic model. Further re-
search is needed in their use in population modeling.

APPENDIX:

SAS CODE USED TO MODEL DATA IN FIG. 4 Us-
ing Partially linear Mixed Model Framework (Quadratic
Spline Basis Function)

data conc;
infile “loess.csv” delimeter =
input subject time conc X y z;
timeclss = time;
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Inconc = log(conc);
array knot_{9};
dok =1t09;
knot_{k} = max(0, time - (k-1)*3)**2;
end;
proc mixed data=conc method =reml;
class subject timeclss;
model Inconc = timeltime / outpred =reml;
random knot_1 - knot_9 / type =toep(1);
repeated timeclss / subject =subject type =sp(power)(time);
run;
quit;
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